Second-Order Belief Hidden Markov Models
نویسندگان
چکیده
Hidden Markov Models (HMMs) are learning methods for pattern recognition. The probabilistic HMMs have been one of the most used techniques based on the Bayesian model. First-order probabilistic HMMs were adapted to the theory of belief functions such that Bayesian probabilities were replaced with mass functions. In this paper, we present a second-order Hidden Markov Model using belief functions. Previous works in belief HMMs have been focused on the first-order HMMs. We extend them to the second-order model.
منابع مشابه
Introducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملTaylor Expansion for the Entropy Rate of Hidden Markov Chains
We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...
متن کاملSpeaker Identification in a Shouted Talking Environment Based on Novel Third-Order Circular Suprasegmental Hidden Markov Models
It is well known that speaker identification yields very high performance in a neutral talking environment; on the other hand, the performance has been sharply declined in a shouted talking environment. This work aims at proposing, implementing, and evaluating novel Third-Order Circular Suprasegmental Hidden Markov Models (CSPHMM3s) to improve the low performance of text-independent speaker ide...
متن کاملEmploying Second-Order Circular Suprasegmental Hidden Markov Models to Enhance Speaker Identification Performance in Shouted Talking Environments
Speaker identification performance is almost perfect in neutral talking environments. However, the performance is deteriorated significantly in shouted talking environments. This work is devoted to proposing, implementing, and evaluating new models called Second-Order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) to alleviate the deteriorated performance in the shouted talking environ...
متن کاملAutomatic word recognition based on second-order hidden Markov models
We propose an extension of the Viterbi algorithm that makes second-order hidden Markov models computationally efficient. A comparative study between first-order (HMM1’s) and second-order Markov models (HMM2’s) is carried out. Experimental results show that HMM2’s provide a better state occupancy modeling and, alone, have performances comparable with HMM1’s plus postprocessing.
متن کامل